Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Min Jin,^a* Li Li,^a Bing Tu,^a Mao-Lin Hu^b and Mei-Chao Li^c

^aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ^bDepartment of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People's Republic of China, and ^cCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.003 Å R factor = 0.056 wR factor = 0.123 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5,5'-Diallylbiphenyl-2,2'-diol-1,4-diazabicyclo[2.2.2]octane (2/1)

In the title compound, $2C_{18}H_{18}O_2 \cdot C_6H_{12}N_2$, 5,5'-diallylbiphenyl-2,2'-diol and 1,4-diazabicyclo[2.2.2]octane molecules are linked by $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds. Received 20 July 2005 Accepted 10 August 2005 Online 17 August 2005

Comment

5,5'-Diallylbiphenyl-2,2'-diol, also known as magnolol, an active principal component isolated from the Chinese herb 'Houpu' (*Magnolia officinalis*), has been shown to be an antiplatelet aggregation (Teng *et al.*, 1988), vessel dilation (Teng *et al.*, 1990) and anti-inflammatory (Wang *et al.*, 1992) agent. The extract of *Magnolia officinalis* contains mainly magnolol and its isomer honokiol. The crystal structure of magnolol has been reported (Wang *et al.*, 1982). In our laboratory, honokiol has been separated from the *Magnolia officinalis* extract by applying molecular recognition of 1,4-diazabicyclo[2.2.2]-octane (DABCO) (Jin *et al.*, 2005). Recently, we obtained a 2:1 complex of magnolol and DABCO, (I). We report here the structure of (I).

The asymmetric unit of (I) contains two magnolol and one DABCO molecules (Fig. 1). The geometry of the magnolol molecule in the title compound (Table 1) is consistent with that observed in the crystal structure of magnolol (Wang *et al.*, 1982). An intramolecular $O-H\cdots O$ hydrogen bond is observed in both magnolol molecules (Table 2). In the crystal structure, the two magnolol molecules are linked by $O-H\cdots O$ hydrogen bonds and the DABCO molecule is linked to them *via* an $O-H\cdots N$ hydrogen bond (Fig. 2).

Experimental

5,5'-Diallylbiphenyl-2,2'-diol (3 mol) and 1,4-diazabicyclo[2.2.2]-octane (1 mol) were dissolved in sufficient ethanol by heating to a temperature where a clear solution resulted. Crystals of (I) were formed by gradual evaporation of the ethanol solution over a period of 7 d at 293 K.

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 1

The asymmetric unit of (I), showing the atomic numbering scheme and 40% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2

The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

$2C_{18}H_{18}O_2 \cdot C_6H_{12}N_2$	Z = 2
$M_r = 644.82$	$D_x = 1.148 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 10.272 (3) Å	Cell parameters from 977
b = 10.646 (3) Å	reflections
c = 17.697 (5) Å	$\theta = 2.4 - 18.5^{\circ}$
$\alpha = 103.948 \ (5)^{\circ}$	$\mu = 0.07 \text{ mm}^{-1}$
$\beta = 95.457 \ (5)^{\circ}$	T = 273 (2) K
$\gamma = 92.632 \ (5)^{\circ}$	Block, colourless
$V = 1864.9 (9) \text{ Å}^3$	$0.32 \times 0.26 \times 0.24 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\rm min} = 0.98, T_{\rm max} = 0.98$ 9357 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.123$ S = 1.076454 reflections 445 parameters H atoms treated by a mixture of independent and constrained refinement 6454 independent reflections 4865 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 21$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.0371P)^2 \\ &+ 1.2457P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1			
Selected	geometric parameters	(Å.	°)

C1-C2	1.329 (3)	C12-C13	1.392 (3)
C1-C6	1.373 (4)	C13-O2	1.346 (3)
C1-C7	1.486 (3)	C13-C14	1.395 (3)
C2-C3	1.395 (3)	C14-C15	1.391 (3)
C3-C4	1.428 (3)	C16-C17	1.543 (4)
C3-C12	1.477 (3)	C17-C18	1.407 (4)
C4-O1	1.374 (3)	C37-N1	1.520 (3)
C4-C5	1.398 (3)	C37-C38	1.523 (3)
C5-C6	1.344 (3)	C38-N2	1.459 (3)
C7-C8	1.560 (4)	C39-N1	1.471 (3)
C8-C9	1.345 (4)	C39-C40	1.520 (3)
C10-C15	1.387 (4)	C40-N2	1.420 (3)
C10-C11	1.392 (4)	C41-N1	1.502 (3)
C10-C16	1.443 (4)	C41-C42	1.508 (3)
C11-C12	1.386 (3)	C42-N2	1.506 (3)
C2-C1-C6	116.2 (2)	C13-C12-C3	128.5 (2)
C2-C1-C7	122.2 (2)	O2-C13-C12	119.2 (2)
C6-C1-C7	121.6 (2)	O2-C13-C14	120.8 (2)
C1-C2-C3	128.2 (2)	C12-C13-C14	119.9 (2)
C2-C3-C4	112.1 (2)	C15-C14-C13	119.9 (2)
C2-C3-C12	128.0 (2)	C10-C15-C14	120.3 (2)
C4-C3-C12	120.0 (2)	C10-C16-C17	120.1 (2)
O1-C4-C5	116.7 (2)	C18-C17-C16	103.2 (3)
O1-C4-C3	121.9 (2)	N1-C37-C38	106.07 (19)
C5-C4-C3	121.4 (2)	N2-C38-C37	110.9 (2)
C6-C5-C4	119.5 (2)	N1-C39-C40	108.3 (2)
C5-C6-C1	122.4 (2)	N2-C40-C39	110.0 (2)
C1 - C7 - C8	94.5 (2)	N1-C41-C42	110.92 (19)
C9-C8-C7	115.4 (3)	N2-C42-C41	106.16 (19)
C15-C10-C11	119.6 (2)	C39-N1-C41	110.70 (18)
C15-C10-C16	129.8 (2)	C39-N1-C37	112.50 (18)
C11-C10-C16	110.5 (2)	C41-N1-C37	105.40 (19)
C12-C11-C10	120.5 (2)	C40-N2-C38	110.4 (2)
C11-C12-C13	119.8 (2)	C40-N2-C42	111.07 (19)
C11-C12-C3	111.6 (2)	C38-N2-C42	110.7 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2 <i>O</i> ···O1	0.90 (3)	1.58 (3)	2.444 (2)	162 (3)
O4−H4O···O3	0.96 (3)	2.00(3)	2.575 (3)	116 (2)
$O1-H1O\cdots N1^i$	0.98 (3)	1.84 (3)	2.634 (3)	136 (2)
$O3-H3O\cdots O2^{i}$	0.89 (3)	2.25 (3)	2.498 (3)	96 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Hydroxy H atoms were located in a difference Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(O)$. All other H atoms were placed in calculated positions and allowed to ride on their parent atoms with C-H distances of 0.93 (phenyl and alkene) and 0.97 Å (methylene), and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Bruker (2000). *SMART* (Version 5.618), *SADABS* (Version 2.05), *SAINT* (Version 6.02a) and *SHELXTL* (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Jin, Z. M., Fu, W., Pan, Y. J., Zou, J. W. & Hu, M. L. (2005). J. Inclusion Phen. Macrocycl. Chem. In the press.
- Teng, C. M., Chen, C. C., Ko, F. N., Lee, L. G., Hung, T. F., Chen, Y. P. & Hsu, H. Y. (1988). *Thromb. Res.* **50**, 757–765.
- Teng, C. M., Yu, S. M., Chen, C. C., Hung, Y. L. & Hung, T. F. (1990). *Life Sci.* **47**, 1153–1161.
- Wang, J. P., Hsu, M. F., Raung, S. L., Chen, C. C., Kou, J. S. & Teng, C. M. (1992). Naunyn-Schmiedchergs Arch. Pharmacol. 346, 707–712.
- Wang, Y., Cheng, M. C., Lee, J. S. & Chen, F. C. (1982). J. Chin. Chem. Soc. 30, 215–221.