Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

5,5'-Diallylbiphenyl-2,2'-diol-1,4-diazabicyclo[2.2.2]octane (2/1)

Zhi-Min Jin, ${ }^{\text {a }}{ }^{\text {Li Li }}{ }^{\text {a }}$ Bing Tu, ${ }^{\text {a }}$

 Mao-Lin Hu ${ }^{\text {b }}$ and Mei-Chao Li $^{\mathbf{c}}$${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People's Republic of China, and ${ }^{\text {c College of Chemical Engineering, }}$ Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.123$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $2 \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}$, 5,5'-diallyl-biphenyl-2, 2^{\prime}-diol and 1,4-diazabicyclo[2.2.2]octane molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

5,5'-Diallylbiphenyl-2, 2^{\prime}-diol, also known as magnolol, an active principal component isolated from the Chinese herb 'Houpu' (Magnolia officinalis), has been shown to be an antiplatelet aggregation (Teng et al., 1988), vessel dilation (Teng et al., 1990) and anti-inflammatory (Wang et al., 1992) agent. The extract of Magnolia officinalis contains mainly magnolol and its isomer honokiol. The crystal structure of magnolol has been reported (Wang et al., 1982). In our laboratory, honokiol has been separated from the Magnolia officinalis extract by applying molecular recognition of 1,4-diazabicyclo[2.2.2]octane (DABCO) (Jin et al., 2005). Recently, we obtained a 2:1 complex of magnolol and DABCO, (I). We report here the structure of (I).

The asymmetric unit of (I) contains two magnolol and one DABCO molecules (Fig. 1). The geometry of the magnolol molecule in the title compound (Table 1) is consistent with that observed in the crystal structure of magnolol (Wang et al., 1982). An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is observed in both magnolol molecules (Table 2). In the crystal structure, the two magnolol molecules are linked by O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and the DABCO molecule is linked to them via an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Fig. 2).

Experimental

5,5'-Diallylbiphenyl-2,2'-diol (3 mol) and 1,4-diazabicyclo[2.2.2]octane (1 mol) were dissolved in sufficient ethanol by heating to a temperature where a clear solution resulted. Crystals of (I) were formed by gradual evaporation of the ethanol solution over a period of 7 d at 293 K .

Received 20 July 2005 Accepted 10 August 2005 Online 17 August 2005

The asymmetric unit of (I), showing the atomic numbering scheme and 40% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2
The packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.98, T_{\text {max }}=0.98$
9357 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.123$
$S=1.07$
6454 reflections
445 parameters
H atoms treated by a mixture of independent and constrained refinement

6454 independent reflections 4865 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-16 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0371 P)^{2}\right. \\
& \quad+1.2457 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

C1-C2	$1.329(3)$	C12-C13	$1.392(3)$
C1-C6	$1.373(4)$	C13-O2	$1.346(3)$
C1-C7	$1.486(3)$	C13-C14	$1.395(3)$
C2-C3	$1.395(3)$	C14-C15	$1.391(3)$
C3-C4	$1.428(3)$	C16-C17	$1.543(4)$
C3-C12	$1.477(3)$	C17-C18	$1.407(4)$
C4-O1	$1.374(3)$	C37-N1	$1.520(3)$
C4-C5	$1.398(3)$	C37-C38	$1.523(3)$
C5-C6	$1.344(3)$	C38-N2	$1.459(3)$
C7-C8	$1.560(4)$	C39-N1	$1.471(3)$
C8-C9	$1.345(4)$	C39-C40	$1.520(3)$
C10-C15	$1.387(4)$	C40-N2	$1.420(3)$
C10-C11	$1.392(4)$	C41-N1	$1.502(3)$
C10-C16	$1.443(4)$	C41-C42	$1.508(3)$
C11-C12	$1.386(3)$	C42-N2	$1.506(3)$
C2-C1-C6	$116.2(2)$	C13-C12-C3	$128.5(2)$
C2-C1-C7	$122.2(2)$	O2-C13-C12	$119.2(2)$
C6-C1-C7	$121.6(2)$	O2-C13-C14	$120.8(2)$
C1-C2-C3	$128.2(2)$	C12-C13-C14	$119.9(2)$
C2-C3-C4	$112.1(2)$	C15-C14-C13	$119.9(2)$
C2-C3-C12	$128.0(2)$	C10-C15-C14	$120.3(2)$
C4-C3-C12	$120.0(2)$	C10-C16-C17	$120.1(2)$
O1-C4-C5	$116.7(2)$	C18-C17-C16	$103.2(3)$
O1-C4-C3	$121.9(2)$	N1-C37-C38	$106.07(19)$
C5-C4-C3	$121.4(2)$	N2-C38-C37	$110.9(2)$
C6-C5-C4	$119.5(2)$	N1-C39-C40	$108.3(2)$
C5-C6-C1	$122.4(2)$	N2-C40-C39	$110.0(2)$
C1-C7-C8	$94.5(2)$	N1-C41-C42	$110.92(19)$
C9-C8-C7	$115.4(3)$	N2-C42-C41	$106.16(19)$
C15-C10-C11	$119.6(2)$	C39-N1-C41	$110.70(18)$
C15-C10-C16	$129.8(2)$	C39-N1-C37	$112.50(18)$
C11-C10-C16	$110.5(2)$	C41-N1-C37	$105.40(19)$
C12-C11-C10	$120.5(2)$	C40-N2-C38	$110.4(2)$
C11-C12-C13	$119.8(2)$	C40-N2-C42	$111.07(19)$
C11-C12-C3	$111.6(2)$	C38-N2-C42	$110.7(2)$

Crystal data

$2 \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}$	$Z=2$
$M_{r}=644.82$	$D_{x}=1.148 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.272(3) \AA$	Cell parameters from 977
$b=10.646(3) \AA$	\quad reflections
$c=17.697(5) \AA$	$\theta=2.4-18.5^{\circ}$
$\alpha=103.948(5)^{\circ}$	$\mu=0.07 \mathrm{~mm}^{-1}$
$\beta=95.457(5)^{\circ}$	$T=273(2) \mathrm{K}$
$\gamma=92.632(5)^{\circ}$	Block, colourless
$V=1864.9(9) \AA^{\circ}$	$0.32 \times 0.26 \times 0.24 \mathrm{~mm}$

Table 2
Hydrogen-bond geometry $\left(\mathrm{A}^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2O \cdots O1	$0.90(3)$	$1.58(3)$	$2.444(2)$	$162(3)$
O4-H4O O3	$0.96(3)$	$2.00(3)$	$2.575(3)$	$116(2)$
O1-H1O $\cdots \mathrm{N}^{\mathrm{i}}$	$0.98(3)$	$1.84(3)$	$2.634(3)$	$136(2)$
O3-H3O $^{\mathrm{H}} \mathrm{O}^{\mathrm{i}}$	$0.89(3)$	$2.25(3)$	$2.498(3)$	$96(2)$

[^0]
organic papers

Hydroxy H atoms were located in a difference Fourier map and refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. All other H atoms were placed in calculated positions and allowed to ride on their parent atoms with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (phenyl and alkene) and $0.97 \AA$ (methylene), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: $\operatorname{SHELXTL}$; software used to prepare material for publication: SHELXTL.

References

Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Jin, Z. M., Fu, W., Pan, Y. J., Zou, J. W. \& Hu, M. L. (2005). J. Inclusion Phen. Macrocycl. Chem. In the press.
Teng, C. M., Chen, C. C., Ko, F. N., Lee, L. G., Hung, T. F., Chen, Y. P. \& Hsu, H. Y. (1988). Thromb. Res. 50, 757-765.

Teng, C. M., Yu, S. M., Chen, C. C., Hung, Y. L. \& Hung, T. F. (1990). Life Sci. 47, 1153-1161.
Wang, J. P., Hsu, M. F., Raung, S. L., Chen, C. C., Kou, J. S. \& Teng, C. M. (1992). Naunyn-Schmiedcbergs Arch. Pharmacol. 346, 707-712.

Wang, Y., Cheng, M. C., Lee, J. S. \& Chen, F. C. (1982). J. Chin. Chem. Soc. 30, 215-221.

[^0]: Symmetry code: (i) $-x+1,-y+1,-z+1$.

